AMP OnePT LF-C2 Alloy for Harsh Environment Assembly

©2022 FCTA Mexico – Confidential and Proprietary

Background

In recent years there has been a demand for solder alloys with better resistance to thermal fatigue. LF-C2 has been developed as a response to that demand.

Increasing the hardness of a solder alloy does not necessarily mean that its resistance to thermal fatigue will increase. High hardness, i.e. resistance to deformation, means that the full applied load will be transmitted to the interfaces. LF-C2, with a good balance of hardness and compliance delivers superior resistance to thermal fatigue. And this alloy has the additional benefit of a low incidence of voiding.

The microstructure of an LF-C2 solder joint addresses thermal fatigue challenges facing products designed for high temperature, high vibration environments. The creep resistance and tensile strength of the LF-C2 alloy enhances reliability beyond the capabilities of standard SAC alloys.

Physical Properties

Items	LF-C2	SAC305	Test Method
Solidus(°C)	205	218	Differential scanning calorimetry: Temperature ramp rate:2°C/min
Liquidus(°C)	213	219	Measurement range 30-300°C JISZ3198-1
Specific gravity (g/cm ³)	7.5	7.4	Archimedes method, Weight of water displaced
Tensile strength (MPa)	90	48	Strain rate 10mm/min 、Test temperature:25°C
Elongation (%)	16	33	Strain rate:10mm/min, Test temperature:25°C
0.2%Proof stress (MPa)	61	41	Strain rate:10mm/min 、Test temperature:25°C
Young's modulus (GPa)	55	51	Free resonance method
ar expansion coefficient (ppm/K)	24	23	Differential expansion method

ET FCT Solder

Key Attributes

•LF-C2 alloy is designed to run in harsh environments with thermo-cycling & thermo-shock ranges of -40 °C to 150 °C

•Improved thermal management due to inherent creep resistance properties

•Reflow at temperatures lower to SAC305

 Improved performance in harsh environment applications such as under-hood automotive, Advanced safety devices (ADAS), high power LED, and avionics/aerospace

The LF-C2 alloy is available in the following FCTA[®] Products:

- AMP OnePT

AMP OnePT Features

- Best in class voiding performance.
- Pin testable flux residues which remain testable for over 5 days.
- Excellent printability and activity.
- Ideal reflow performance with excellent wetting, very low solder balling and graping.
- Halide and halogen free which may improve long term reliability.
- Passes IPC, JIS SIR & ECM and Bellcore Telcordia SIR & ECM.

AMP OnePT Features

Reflow Parameter	Guideline	Notes
Profile length	3.0 to 5.0 min	Profile length is dependent upon the PCBA
(25 °C to peak)	(180 to 300 sec)	and process.
Heating ramp rate	1.0 to 3.0 °C/sec	Lower ramp rates tend to equalize reflow
Preheat / soak time	30 to 120 sec	Linear profiles are a good starting place but
	(150 - 200 °C)	may not work for all PCBAs.
Peak temperature	235 to 250 °C for SAC alloys	15 to 30 °C above liquidus for other solder
		alloys.
Reflow time	30 to 90 sec	Time above the liquidus point of the solder
(time above liquidus)		alloy used.
Cooling ramp rate	1.0 to 6.0 °C/sec	Higher cooling rates may refine the grain
		structure.

High Thermal Fatigue Life Pb-free Solder:LF-C2

LF-C2 composition: Sn3.5Ag1.0Cu+3.0Bi

• <u>High Reliability</u>

Slow crack propagation during thermal cycling

Low Voiding

Compared to other high strength alloys, with consequent improvement in reliability.

• <u>Low Melting Point</u> 10°C lower than SAC305 QFN(10mm) Thermal pad

X-ray image after soldering

Limits of the Ag Strengthening Effect

Thermal fatigue life of SAC305 joints declines with increasing ageing time and ageing temperature

Motalab, M, *et. al.*, (2014), 'Correlation of Reliability Models Including Aging Effects with Thermal Cycling Reliability Data', SMTAI2014 Proceedings.

- The effectiveness of the fine dispersion of Ag₃Sn as obstacles to dislocation movement declines as the
 particles coarsen and the interparticle spacing increases as result of Oswald ripening during isothermal ageing.
- As a consequence, the creep rate, a key determinant of joint life, accelerates.

LF-C2 Strengthening Mechanism

- Both Particle Strengthening and Solid Solution Strengthening inhibit dislocation movement
- The characteristic thermal stability of LF-C2 is due to the combination of particle strengthening and solid solution strengthening effect.

Reason of 3% Bi Addition in LF-C2

- Solder with 3% Bi shows the best creep resistance. The alloy above 3% Bi content shows less effective in creep resistance because brittle Bi phase starts to be observed.
- LF-C2 (Sn3.5Ag1.0Cu3Bi) is designed SAC eutectic alloy (which contains slightly higher Cu to minimize Cu pad erosion) with 3% Bi as the optimum level Bi content.

©2022 FCTA Mexico – Confidential and Proprietary

Reason for No Sb in LF-C2

- Addition of Sb makes the alloy more difficult property to outgas during reflow.
- LF-C2 is designed for wider component & process choices with better thermal fatigue than SAC305.

Shear Test Conditions

- Substrate
 - FR-4(Cu-OSP)
- Reflow conditions
 - Ramp-to-Peak profile
 - Ramp Rate: 1.5°C/sec, Peak temperature: 245°C 60sec
- Thermal Shock conditions
 - -40°C/+125°C Dwell Time: 30min
- Chip Shear conditions
 - Equipment: Autograph (Shimadzu)
 - Shear speed: 0.5mm/min
 - Component
 - Chip resistor (R1005, R2012 in metric size)
 - Chip capacitor (C1005, C2012 in metric size)
 - Sample number: 5

Shear Test Results

LF-C2 shows smaller shear strength degradation than SAC305.

Shear Test Results

LF-C2 shows smaller shear strength degradation than SAC305.

FCT FCT Solder

Cross-Section Analysis LF-C2 vs SAC305

Component Type: R2012

No crack is observed in the LF-C2 underneath the component, and by accommodating strain LF-C2 also minimizes damage to components and PCB

©2022 FCTA Mexico – Confidential and Proprietary

Thermal Shock Test Condition

- Substrate
 - FR-5(Cu-OSP)
- Alloy
 - SAC305
 - Alloy A (SnAgCuBiSbNi)
 - LF-C2
- Reflow condition
 - Ramp-to-Peak
 - Ramp rate: 1.5°C/sec, Peak temperature: 245°C 60sec
- Thermal shock condition
 - -40°C/+150°C Dwell time 30min
- Component size
 - R3216 in metric (Sample number: 70)

Thermal Shock Test Condition

FCT FCT Solder

Cross-Sectional Analysis LF-C2 vs SAC305 (after 1000 cycles)

ET FCT Solder

Drop Shock Test

Apparatus

Drop shock test apparatus

FCT Solder

Drop Shock Test (Conditions)

Test PCB appearance **Circuit** pattern C2 ---- Substrate pattern ---- Component pattern

Disconnection	Corner	4 points	:C1,C2,C3,C4
detection point	Whole part	1 point	:51

[Materials information]

Item	Name	Note				
	SN97C P608 D4 (SAC305)	Sn-3Ag-0.5Cu				
Solder paste	SN100CV P608 D4	Sn-1.5Bi-0.7Cu-Ni-Ge				
	LF-C2 P608 D4	Sn-3.5Ag-3Bi-1Cu				
Component	CABGA196 (A-CABGA196-1.0-15mm-DC-LF-305)	15x15mm, 1.0mm pitch Solder ball alloy: SAC305				
Substrate	NS drop test board (JEDEC JESD22-B111A)	76x76x1mm FR-4, Cu-OSP, 6 layers, non-through hall				

[Drop conditions]

Item	Conditions
Max. acceleration	1500 G (on the center of PCB)

[Stencil information]

ltem		Conditions
Stencil	thickness	100 µm

Drop Test Results

LF-C2 > SN100CV > SN97C

Drop Test Results ~1500G~

Table.1-1 Drops to Failure %ascending order										1		
Solder allow	Numbers of Test											Δνο
Solder alloy	1	2	3	4	5	6	7	8	9	10		Ave.
SN97C	60	73	80	81	97	99	114	120	129	141		99.4
SN100CV	65	119	132	141	150	151	162	164	171	204		145.9
LF-C2	107	152	165	166	178	192	197	204	223	261		184.5

 \Rightarrow LF-C2 and SN100CV tend to be more impact resistant than SN97C

Table.1-2 Disconnection detection point

Solder alloy				Number of Test							
Solder alloy	1	2	3	4	5	6	7	8	9	10	
SN97C	C 1	C3	C2	C4	C2	C2	C4	C1	C2	C4	
SN100CV	C2	C3	C3	C2	C2	C3	C4	C2	C2	C2	
LF-C2	C4	C2	C3	C2	C3	C2	C1	C4	C2	C1	

 \Rightarrow For all solder alloys, the disconnection detection point is the corner

NIHON SUPERIOR.

Drop Test Analysis (X-section observation 1500G)

E FCT Solder

Drop Test Analysis (X-ray observation 1500G)

⇒ Void occupancy tends to the following. SN97C > LF-C2 > SN100CV

- Drop test performance, Characteristic life For 1500 G, LF-C2 had the longest characteristic life (about twice as SN97C=SAC305), followed by SN100CV and SN97C.
- Void observation by X-ray, and the void occupancy of all alloys was less than 5%. SN97C showed the highest voids, followed by LF-C2 and SN100CV

FCT FCT Solder

Drop Test Results 1500G

Table.1-1 D	.1-1 Drops to Failure %ascending order										[Unit:times]
Solder allow	Numbers of Test										
Solder alloy	1	2	3	4	5	6	7	8	9	10	Ave.
SN97C	60	73	80	81	97	99	114	120	129	141	99.4
SN100CV	65	119	132	141	150	151	162	164	171	204	145.9
LF-C2	107	152	165	166	178	192	197	204	223	261	184.5

Table 1-1 Drons to Failure Wascending order

⇒ LF-C2 and SN100CV tend to be more impact resistant than SN97C

Table.1-2 Disconnectio	n detection point
------------------------	-------------------

Solder alloy					Numbe	r of Test				
Solder alloy	1	2	3	4	5	6	7	8	9	10
SN97C	C1	C3	C2	C4	C2	C2	C4	C1	C2	C4
SN100CV	C2	C3	C3	C2	C2	C3	C4	C2	C2	C2
LF-C2	C4	C2	C3	C2	C3	C2	C1	C4	C2	C1

• Cracks occurred in the solder bulk of the LF-C2, indicating that there was a stress load on this part. For SN97C (SAC305) the cracks occurred at the intermetallic compound layer (IMC).

• This is because the solid solution strengthening by bismuth in LF-C2 increases the solder bulk strength near the bonding interface. The characteristic life of the LF-C2 substrate is longer than that of the SN97C substrate.

Vibration Test Results

Test Conditions

Test Vehicle

- Test Board : FR-4 (JEDEC Board_76x76x1mm, 6 layers, Cu-OSP, Non T/H)
- Component: BGA196 (SAC305, 460um)
- Stencil Thickness: 120um
- Solder Alloy: LF-C2, Alloy A, SAC305

Vibration Condition

- Vibration Mode: 395Hz, Primary resonance
- Amplitude: 8G
- Equipment: m120-CE (IMV)

Appearance

Daisy Chain Design

Vibration Test Results

The vibration life is the longest with LF-C2 that is significantly longer with SAC305 and the shortest with Alloy A.

FCT Solder

Voiding Rate & Wetting Performance LF-C2 vs. Leading Competitor Alloy

Test Conditions

Component	Material	Note							
Solder Paste	LF-C2	Solidus : 208°C Liquidus : 213°C		F%=11.2% 166Pa•s, TI=0.51					
	Competitor Alloy	Solidus : 207°C Liquidus : 220°C		F%=11.2% 172Pa•s, TI=0.58					
	CR2125	Number: 27 L2.0 × W1.25 mm							
	LED	Number: 10 L2.4 × W1.85 mm							
Components	PBGA256	Number: 2 BGA Ball size(SAC305): 500µm							
	MLF-68	Number:6 10×10 mm							
	SOT23	Number: 15 L2.4 × W2.9 mm							
Circuit Boards	NS Test board A	Substrate: FR-4							
	NS Reflow test Board	Substrate: FR-4							

©2022 FCTA Mexico – Confidential and Proprietary

Test Items

Item	Method	Note
Void Area	Measure the voiding by area	Mean value is reported
Mid Chip Ball	Count the number of mid chip ball in CR2125	Under the component is also counted
Wettability	Count the number of good wetting terminals of SOT23 lead frame	

Sample preparation Conditions

Items				
Reflow Profile	See P12			
Atmosphere	Air			

Test Result: Voiding Rate

LF-C2 showed lower voiding rate than competitor in all components

Voiding Rate

LF-C2 showed less voiding rate than Alloy A in all components

Test Result: Mid-chip Balls

LF-C2 showed less mid-chip balls than competitor.

FCT FCT Solder

Mid-chip Ball (CR2125)

	LF-C2			Innolot		
	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	6.0	8.0	0.0	0.0	4.0
	0.0	0.0	0.0	0.0	0.3	0.0
	0.0	0.0	E 8	0.0	6 0	0.0
X-ray Image	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.9	0.0	E,B
		E 3	0.0	0.0	0.0	E.D.
	0.0	0.0	0.0	0.0	0.0	0.0
	8.9	с э	0.0	0.0	0.0	e, p
Number of balls	14				19	

©2022 FCTA Mexico – Confidential and Proprietary

Wettability (SOT23)

	LF-C2	Innolot		
Microscope Image x50	Image: Stopper			
Number of Good wetting terminals	24/30	25/30		

Recommended Reflow Profile

FCT Solder

Recommended Reflow Profile

FCT FCT Solder

Contact your FCT Assembly, Inc. representative for details or further information

